Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: a preliminary study.

نویسندگان

  • M Ali Darendeliler
  • A Zea
  • G Shen
  • H Zoellner
چکیده

BACKGROUND This study was designed to determine whether or not high-frequency and low-magnitude vibration affects orthodontic tooth movement caused by magnetic or/and mechanical forces. METHODS Forty-four 7-week-old Wistar rats were randomly divided into four groups, with each group further divided into experimental and control subgroups. Neodymium-Iron-Boron (Nd-Fe-B) magnets and Sentalloy closed coil springs were placed between maxillary or mandibular first molars and incisors to activate tooth movement. The animals of experimental subgroups were exposed to the vibration induced by pulsed electromagnetic fields (PEMF) whilst the control subgroups were under normal atmosphere. The experiment lasted for 14 days and all of the animals were sacrificed for examination. The changes in the space between the molar and incisor were measured to indicate the amount of tooth movement. RESULTS The coil springs, either with sham or active magnets, move molar much more than magnets alone, regardless of absence or presence of PEMF (p < 0.001). Under PEMF, the coil spring moved significantly more amount of tooth movement than that of coil-magnet combination (p < 0.01), as did the magnets compared to sham magnets (p < 0.019). Under a non-PEMF scenario, there was no significant difference in tooth movement between coil spring and coil-magnets combination, nor was there difference between magnets and sham magnets. CONCLUSIONS It is suggested that the PEMF-induced vibration may enhance the effect of mechanical and magnetic forces on tooth movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicates that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coil is a device that generates pulsed electromagnetic fields. Objective: In this study, a pair of Helmholtz coils for enhancing thehealing process in periodontitis w...

متن کامل

2D-Magnetic Field and Biaxiall In-Plane Pre-Load Effects on the Vibration of Double Bonded Orthotropic Graphene Sheets

In this study, thermo-nonlocal vibration of double bonded graphene sheet (DBGS) subjected to 2D-magnetic field under biaxial in-plane pre-load are presented. The elastic forces between layers of graphene sheet (GS) are taken into account by Pasternak foundation and the classical plate theory (CLPT) and continuum orthotropic elastic plate are used. The nonlocal theory of Eringen and Maxwell’s re...

متن کامل

Pulsed electromagnetic field attenuated PTSD-induced failure of conditioned fear extinction

Objective(s): This study aimed to determine whether exposure to pulsed electromagnetic field (PEMF) can impair behavioral failure as induced by PTSD, and also its possible effects on hippocampal neurogenesis. PEMF was used as a non-invasive therapeutic tool in psychiatry.Materials and Methods: Male rats were divided into Control-Sham exp...

متن کامل

Nonlinear Flow-Induced Flutter Instability of Double CNTs Using Reddy Beam Theory

In this study, nonlocal nonlinear instability and the vibration of a double carbon nanotube (CNT) system have been investigated. The Visco-Pasternak model is used to simulate the elastic medium between nanotubes, on which the effect of the spring, shear and damping of the elastic medium is considered. Both of the CNTs convey a viscose fluid and a uniform longitudinal magnetic field is applied t...

متن کامل

Longitudinal Magnetic Field Effect on Torsional Vibration of Carbon Nanotubes

Torsional dynamic analysis of carbon nanotubes under the effect of longitudinal magnetic field is carried out in the present study. Torque effect of an axial magnetic field on a carbon nanotube has been defined using Maxwell’s relation. Nonlocal governing equation and boundary conditions for carbon nanotubes are obtained by using Hamilton’s minimum energy principle. Eringen’s nonlocal stress gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australian dental journal

دوره 52 4  شماره 

صفحات  -

تاریخ انتشار 2007